

Page 1 of 21

Summer Cart
Synchronization Guide for .NET

Page 2 of 21

Introduction
This guide explains how you can synchronize the data from your data management software

with your Summer Cart-based web store. In the ZIP package you will find the source code of an

example application written in .NET that demonstrates a synchronization of an SQL Server 2005

Express database with a Summer Cart store. If you read the guide and study the example

application, you will be able to customize it in a way so you can synchronize the data from your

own software, no matter what type of database you use and how your data is organized.

How It Works
Summer Cart allows for data synchronization with other systems through web services. Any

system that is given a Summer Cart Sync API account can manage the content of the store

through a convenient platform- and technology-independent API. Mirchev Ideas has developed

a .NET library (SummerCart.SynchronizationService.dll) that further streamlines and simplifies

the synchronization process, and a sample application is provided that demonstrates the usage

of the library in a real world scenario.

Prerequisites
Before you begin, make sure you have the following prerequisites installed:

 .NET Framework 3.5 or later

 SQL Server 2005 Express Edition (http://go.microsoft.com/fwlink/?linkid=65212)

 A Summer Cart installation with a Sync API account – see the “How Do I?” section for

more information on how to create an API account.

 Visual Studio 2008+ or compatible development environment

http://go.microsoft.com/fwlink/?linkid=65212

Summer Cart Synchronization Guide

Page 3 of 21

Contents
Introduction .. 2

How It Works .. 2

Prerequisites ... 2

Contents .. 3

Getting Started .. 4

Running the sample application ... 7

Command line options .. 7

Understanding how the sample application works .. 8

Modifying the Sample Application ... 11

Replace “MyCompany” with your company name .. 11

Modify your App.config .. 11

Modify the MyCompanyDataProvider class ... 11

Modify the MyCompanyEntityFactory class ... 11

Modify the MyCompanyDataAdapter class .. 12

Modify the MyCompanySummerCartAdapter class ... 12

Remove the sample database... 12

Working with custom Summer Cart services.. 13

Demo Application ... 14

Best Practices .. 16

Error Handling ... 17

Log Levels .. 17

Troubleshooting .. 18

How Do I? .. 20

Create an API account in Summer Cart?... 20

Summer Cart Synchronization Guide

Page 4 of 21

Getting Started
The demo application uses Sync Agents for synchronization. A Sync Agent we call any class that

implements ISyncAgent, an interface with a single method called SynchronizeCatalog(). This

method is supposed to synchronize your catalog1 and your Summer Cart web store. The

implementation of ISyncAgent that ships with the demo application is capable to synchronize

data that comes from any type of database supported by .NET and a Summer Cart store. For

this to work, the sync agent uses two adapters: a Data Adapter and a Summer Cart Adapter.

The Data Adapter works with your database. It has only two methods, LoadCatalog() and

SaveCatalog(). It does not directly work with raw database queries, but instead uses two other

classes. A Data Provider contains the SQL queries necessary to work with your database and

returns DbReader instances. An Entity Factory is able to convert the raw data coming from a

DbReader to business entity. Finally, a Summer Cart Adapter is what synchronizes the catalog

loaded by the Data Adapter with your Summer Cart web store. It uses a number of

Synchronization Strategies, each one knowing how to synchronize a specific business entity.

Your Database Summer Cart

Sync Agent
SynchronizeCatalog()

Data Adapter
LoadCatalog()
SaveCatalog()

Data Provider

Summer Cart
Adapter

Entity Factory
Synchronization

Strategies

1 In Summer Cart, “catalog” is a collective name for all the business data that is available in a

store, such as categories, manufacturers, products, customers, etc.

Summer Cart Synchronization Guide

Page 5 of 21

You may be wondering why we need all those classes. In fact, these are all interfaces: we have

ISyncAgent, IDataAdapter, IEntityFactory, IDataProvider and so on. All of them contain only the

basic set of properties and methods needed, and you can provide different implementation for

any of the interfaces. For example, if you don’t use SQL Server, but e.g. Oracle or MySQL, or if

your table structure is different than the one in the demo application, you would only need to

provide an alternative implementation of your Data Provider and maybe for your Entity Factory.

Everything else will stay the same.

A chapter later in this guide, called “Modifying the Sample Application,” explains exactly what

you have to do to modify the demo application so it works with your data source.

If you open your App.config file, you will see something similar to the following:

<syncAgents>

 <syncAgent name="MyCompany">

 <dataAdapter

 type="MyCompany.SummerCartSynchronization.Adapters.MyCompanyDataAdapter, …"

 connectionString="<Your Connection String>"/>

 <summerCartAdapter

 type="MyCompany.SummerCartSynchronization.Adapters.MyCompanySummerCartAdapte"

 endpointName="MyCompanySummerCartServiceEndpoint"

 syncMode="Strict"

 username="<Your Sync API Username>"

 password="<Your Sync API Password>"

 getSyncChunkSize="5000"

 modifyChunkSize="1000"/>

 </syncAgent>

</syncAgents>

Here, we define a single Sync Agent called “MyCompany”. We specify that the type of its data

adapter is MyCompany.SummerCartSynchronization.Adapters.MyCompanyDataAdapter. If we

needed another implementation of the data adapter, we could have specified it directly from

the App.config file. We also set the connection string to the database. Similarly, we specify the

type of the Summer Cart adapter, which endpoint to use (this should be changed to match the

address of your store), Sync API username and password, and chunk sizes. Later in this guide

these properties will be explained in greater detail.

Summer Cart Synchronization Guide

Page 6 of 21

The following diagram illustrates the 4 basic interfaces and their default implementations:

Summer Cart Synchronization Guide

Page 7 of 21

Running the sample application

To run the sample application, follow these steps:

1. Open “MyCompany.SummerCartSynchronization.sln” in your Visual Studio;

2. In your App.config, replace “www.mycompany.com” with the actual address of your

web store;

3. In your App.config, modify the <summerCartAdapter> element so it uses the username

and password of your API account;

4. Attach Data\MyCompany.mdf to an SQL Server of your choice. By default it is set to use

.\SQLEXPRESS. If you attach the database to another server, modify the <dataAdapter>

element set a correct connection string.

5. Run the application.

Command line options

The sample application supports these command line arguments:

 -sync Tells the program to perform synchronization;

 -agent:AgentName Tells the program to use an agent specified by AgentName for

synchronization. An agent with such name must be defined in the configuration file;

 -contents:Contents Tells the program to synchronize only the specified catalog

contents. You must provide an integer number that can be converted to the enum

CatalogContents. For example, if you want to synchronize only Categories and

Manufacturers, specify 1 + 2 = 3. Default is CatalogContents.All.

These arguments are available to the Main method in an object-oriented way through the

StartupParameters class. Note that if you run the program with no arguments, nothing will

happen. If this is not the desired behavior, you can always modify your Main method to ignore

parameters.Synchronize or the StartupParameters class to set Synchronize to true by default.

Summer Cart Synchronization Guide

Page 8 of 21

Understanding how the sample application works

This is the sequence of events that takes place in the application when you run it:

1. The Main method processes your command line arguments. By default in Debug mode

these arguments are “–sync –agent:MyCompany”. Then an ISyncAgentFactory instance

of type SyncAgentFactory is created. This factory is responsible for creating sync agents.

It would create sync agents of type SyncAgent, which is the default implementation. A

sync agent will be created based on the information specified in your App.config file.

Here, if you need a custom ISyncAgentFactory, you can implement one and replace this

line with one that uses your custom factory. A custom factory may create custom sync

agents that, for example, are not configured through App.config, or do not work with a

database, or work with several Summer Cart shops, or any other advanced scenario that

you can think of.

2. The Main method asks the sync agent to synchronize the catalog. You may want to

synchronize the whole catalog at once using CatalogContent.All, or synchronize only

part of the catalog. The demo application shows how to synchronize the whole catalog,

but in 7 steps – manufacturers first, then product classes, then attributes and so on. This

would be a better approach if you have a lot of data. See the Best Practices section for

further details on how to best organize the synchronization.

3. The sync agent will load your catalog, then first update Summer Cart with your latest

changes, then update your catalog with Summer Cart’s changes (currently only orders)

and finally save your catalog.

You can find all the diagrams from this guide, along with others, in the Diagrams folder of the

demo application.

Summer Cart Synchronization Guide

Page 9 of 21

This is the sequence of actions performed by the sync agent to synchronize your catalog:

Load catalog
from your database

Prepare getSync() request

getSync()

Apply getSync() response

1

2

3

Load the catalog from your database through an IDataAdapter. At
this point all entities are of state EntityState.Synchronized.

getSync() will report what part of your data is out of sync with
Summer Cart. You send the Id and a HashCode of each of your
records, and the service checks whether records matching that Id and
HashCode exist within the Summer Cart database. If a record does
not exist, it has to be inserted. If a record exists, but its HashCode is
different, the record was modified in your system and needs to be
updated. If a record does not exist, it was deleted in your system and
needs to be deleted in Summer Cart as well. Based on the getSync()
response, we change the states of entities to New, Modified or
Deleted.

All items that need to be updated in Summer Cart are sent in chunks
through the modify() method. It returns the status of each requested
modify operation, either Success or Exception. On Success, we
change the state of the entity to Synchronized. On Exception we log
the exception message. You can always check whether your catalog
needs further synchronization using its HasUpdates property.

Prepare getOperationsLog() request

getOperationsLog()

Apply getOperationsLog() response

Step 3 is necessary only if you are synchronizing orders. Orders are
different than other entities because they are first created in Summer
Cart and then synchronized to your system, as opposed to all other
entities that are first created in your system and then synchronized
to Summer Cart.

getOperationsLog() returns all operations made in Summer Cart with
entities after their last synchronization with your system. For
example, a new order may be created in Summer Cart and then
updated several times. All these operations will be returned by
getOperationsLog(), so you can insert the order in your system. After
the call to getOperationsLog() (which returns only Ids) we call the
get() method to get the actual entities from Summer Cart and update
our catalog. We save the catalog, thus changing the state of updated
orders to Saved. Every operation returned by getOperationsLog() that
you have been successfully applied in you system must be marked as
synchronized, so it is not reported by Summer Cart anymore and this
is done through the markOperationsLogSynced() method.

Save catalog
to your database

markOperationsLogSynced()

Prepare modify() request

modify()

Apply modify() response

Summer Cart Synchronization Guide

Page 10 of 21

Summer Cart 4 added support for sync transactions. Until this version the Summer Cart adapter

had to send the Id’s and hash codes of all your business entities of a particular type (e.g.

products) in one call to the service, using the getSync() method. This required you to increase

script and message sizes if you have a large number of entities, e.g. over 50,000. The latest

version of the adapter internally uses the new transaction mechanism. First it opens a sync

transaction (the startSyncTransaction() method), then it adds sync info in chunks whose size is

specified by the getSyncChunkSize attribute in your App.config (the addSyncInfo() method),

then it commits the transaction (the performSyncTransaction() method) and finally gets and

applies the results to your catalog, again in chunks (the getSyncTransactionResults() method).

This change in the internal usage does not affect the way you would be running, using, or

modifying the demo application.

Summer Cart Synchronization Guide

Page 11 of 21

Modifying the Sample Application

Replace “MyCompany” with your company name

Your first step should be to replace MyCompany with your company name around the project.

For this you could use the Replace in Entire Solution feature of Visual Studio, but you will have

to rename some files by hand. Don’t forget to change the command arguments in Debug mode

from “–sync –agent:MyCompany” to such that use your agent name.

Modify your App.config

In your App.config, replace “www.mycompanystore.com” with the actual URL of your web

store, and modify the sync agent so it uses your API username and password, and a connection

string to your system.

Modify the MyCompanyDataProvider class

MyCompanyDataProvider implements the methods defined in the IDataProvider interface, such

as GetCategories(), GetManufacturers() and so on. It is supposed to return DbDataReader

instances that fetch the various types of data in a catalog. This is the only class in the system

that is specific to the database vendor. If you’re not using SQL Server, you should change the

OpenConnection method so it uses another provider (e.g. OracleConnection, OdbcConnection,

etc.). Modify the various Get() methods so they use queries that return the data you want to

synchronize. The sample application has a database structure that exactly matches that of

Summer Cart. Granted, your structure will be different, so you can either specify your (probably

complex) SQL queries directly in the code (as in the sample application), in a resource file, or

use views or stored procedures in your database that adapt the data. Of course these are just

some of the possible approaches.

Modify the MyCompanyEntityFactory class

MyCompanyEntityFactory implements the methods defined in the IEntityFactory interface, such

as CreateCategory(), CreateManufacturer() and so on. This is the place to convert the data that

comes from your database to entities. In the sample application this is a really trivial task, as

the database structure matches exactly that of the entities. In your application you’d probably

need to write some more code. Note how all Id properties of all entities are of type string. This

is so Summer Cart supports any type of primary keys because anything (ints, longs, guids, etc)

Summer Cart Synchronization Guide

Page 12 of 21

can be converted to string. Note that in addition to the MyCompanyEntityFactory, which

converts from your database model to the model of the synchronization application, there is

one more entity factory called SummerCartEntityFactory, which converts from the Summer Cart

model to the model of the synchronization application. This is used only for entities that are

synchronized from Summer Cart to your system, e.g. orders. You would not need to

understand, implement, or in fact use this factory at all from your code unless you have a

custom Summer Cart store with custom orders.

Modify the MyCompanyDataAdapter class

MyCompanyDataAdapter implements the methods defined in the IDataAdapter interface:

LoadCatalog() and SaveCatalog(). You are free to load and save the catalog in any way you

want, but a common scenario is implemented in the sample application. You have various Fill()

methods, such as FillCategories(), FIllManufacturers(), which fill the respective properties of the

catalog, such as Categories, Manufacturers and so on. For entities that you are supposed to

save in your database (e.g. orders) there are Save() methods such as SaveOrders(). Each of

these methods uses the underlying IDataProvider to get the raw data, and then uses the

underlying IEntityFactory to construct entities based on the raw data. The DataAdapter class is

the place to perform any custom entity processing logic, validation and sorting. The sample

application provides an example on how to sort Manufacturers alphabetically instead of using

the SortIndex from the database.

Modify the MyCompanySummerCartAdapter class

MyCompanySummerCartAdapter inherits from SummerCartAdapterBase, which implements

the ISummerCartAdapter interface. Unless you’re dealing with a custom Summer Cart service

you won’t need to make any modifications to this class. For easier debugging you may want to

override the public methods of the class with identical implementations from the base class.

This way you can set breakpoints and go through the entire synchronization process. The

source code of SummerCart.SynchronizationService.dll is available upon request.

Remove the sample database

As soon as you have tested the application with the sample SQL 2005 Express database, you can

delete it.

Summer Cart Synchronization Guide

Page 13 of 21

Working with custom Summer Cart services

If you are working with a custom Summer Cart service (i.e. one customized for a specific client)

you will have to reference the SummerCart.SynchronizationService project directly, configure

your service references and modify the Summer Cart adapter and/or entities to fit your needs.

The source code of SummerCart.SynchronizationService.dll is available upon request.

Summer Cart Synchronization Guide

Page 14 of 21

Demo Application
As a demonstration of how you can call the MyCompany application from another program (be

it in .NET or otherwise) and process/display synchronization messages, we have developed an

additional demo application that has a simple GUI.

The demo application allows you to synchronize your full catalog or select and synchronize only

the entities you need. It demonstrates two ways to communicate with the sync application:

 Command Line The sync application is called as a separate process, and correct

command line parameters are passed. Its NLog.config file is configured with a Console

target so all messages are printed in the console, and the console output itself is

redirected to the demo application, which processes the messages and displays them in

a grid. (No console window is visible to the user.) This method of synchronization works

best if your calling application is not written in .NET, but you still want to process

synchronization messages;

Summer Cart Synchronization Guide

Page 15 of 21

 In-Process The sync application is added as a reference to the calling application and its

Main method is called directly. This way the sync application is executed in the same

process as the calling application. The NLog.config file is configured with a MethodCall

target so all messages are directly sent to a method of the calling application, which

processes them and displays them in a grid. This is the preferrable method if your

calling application is written in .NET.

Summer Cart Synchronization Guide

Page 16 of 21

Best Practices
Please consider the following best practices when your build your Summer Cart synchronization

application:

 Validate your data before sending it to the service. At database level, use unique

primary keys and foreign keys to assure referential integrity. Failing to provide the

service with valid primary keys and foreign keys will result in sometimes obscure error

messages. It will be much easier to prevent incorrect data to reach the service than

figuring out what is wrong from verbose log files.

 Based on the amount of your data, you may consider calling the service in several

passes. This is very straightforward to use. This is how we synchronize all items at once:

syncAgent.SynchronizeCatalog(CatalogContents.All);

This is how the same thing can be done in multiple steps, each time synchronizing just a

part of the catalog:

syncAgent.SynchronizeCatalog(CatalogContents.Manufacturers | CatalogContents.Categories);

syncAgent.SynchronizeCatalog(CatalogContents.ProductClasses);

syncAgent.SynchronizeCatalog(CatalogContents.ProductClassesAttributes);

syncAgent.SynchronizeCatalog(CatalogContents.ProductClassesAttributesValues);

syncAgent.SynchronizeCatalog(CatalogContents.Products);

syncAgent.SynchronizeCatalog(CatalogContents.ProductAttributeValues);

The reason you may want to do this is because of memory limits configured in your

hosting environment. Our tests indicated that a standard Summer Cart installation on a

server that grants up to 8 MB of memory to a script, no more than about 10000 records

can be imported by the script on a single pass. If you have more than 10000 records in

your database, you will need to either synchronize on several passes or increase the

maximum amount of memory given to scripts.

Summer Cart Synchronization Guide

Page 17 of 21

Error Handling
The sample application demonstrates the usage of log files and console to output the result of

the synchronization, although you can change this behavior easily. We are using the popular

open-source logging framework NLog for all logging purposes. The sample application

demonstrates the usage of the following logging rules:

 All messages with level Debug or above are displayed in the console window;

 All messages with level Debug or above are logged into /Logs/Session.log. The lifetime

of this file is for the session only, it is overwritten if you run the application again;

 All messages with level Error or above are logged into /Logs/Errors.log. This file is NOT

overridden on next startup, so you always have a full history of application errors.

These rules are configured in the file NLog.config and are not hard-coded into the application.

You can change the rules and the logging behavior completely by only editing the NLog.config

file. For example, you may want e-mail messages to be sent to specific users when certain

event happens. You can also handle events in a completely custom way by your own code using

a MethodCall target. In this target you specify method handler(s) for events and NLog will

invoke them when the specified events are raised. Note that you can handle events from

different sources in a different way. For example, an error event from the Program class should

typically abort your synchronization process, and the user should be notified about the error,

while errors from your data adapter (indicating incorrect data in your database) may be ignored

and maybe only a list of warnings displayed to the user.

Consult NLog documentation for more detailed information on how to use and configure NLog:

http://nlog-project.org/wiki/Documentation

More information about the MethodCall target can be found here:

http://nlog-project.org/wiki/MethodCall_target

Log Levels

The sample application and the Summer Cart synchronization library both log messages with

different log levels based on message importance and verbosity. Following is a list of used log

levels and when they are used:

http://nlog-project.org/wiki/Documentation
http://nlog-project.org/wiki/MethodCall_target

Summer Cart Synchronization Guide

Page 18 of 21

 Trace – log messages with maximum details. Full entity contents and complete requests

and responses are logged. By default trace messages are not logged as they are rather

verbose. You can easily enable their logging by modifying the min log level of your

targets in your NLog.config file.

 Debug – debug messages contain summary information on what is being synchronized.

For example, when you modify your store, debug messages will tell how many entities

are inserted, updated or deleted, but will not tell the exact contents of the entities (you

will have to enable Trace logging to find this out).

 Info – informational messages that are not programming specific and may be displayed

to the user.

 Warn – warning messages that may or may not be displayed to the user, or alternatively

sent via email to developers on handled in another way.

 Error – errors that would not stop or crash the application. For example, if a single entity

could not be synchronized, an error message will be logged, but the application will

continue with the next entity. Error messages may or may not be displayed to the user,

or alternatively sent via email to developers on handled in another way.

 Fatal – errors that prevent the synchronization process from continuing and cause the

application to immediately exit. Fatal error messages may or may not be displayed to

the user, or alternatively sent via email to developers on handled in another way.

Troubleshooting

There are several things that may go wrong with your synchronization:

 If your SQL queries are invalid or there is a problem with your connection string, you will

get error messages pointing to your DataProvider;

 If you are not constructing your entities correctly, you will get error messages pointing

to your EntityFactory;

 If your data makes it to the service, you can either receive an error message from the

getSync() operation, or from the modify() operation. In some scenarios the message will

not be logged by NLog, and you will have to debug your WCF service logs. Look at your

Logs folder for the files “WCF.Messages.svclog” and “WCF.Trace.svclog”. You can open

them using the Microsoft’s Service Trace Viewer. To turn on WCF service logging, open

Summer Cart Synchronization Guide

Page 19 of 21

your App.config file, locate the <messageLogging> element within <diagnostics>, and

change logEntireMessages, logMalformedMessages and logMessagesAtTransportLevel

to “true”.

 You can use the built-in ObjectLogger to conveniently log whole objects, such as your

catalog, requests and responses from getSync() and modify().

LogObject("SyncRequest.log", request);

service.getSync(header, request, out response);

LogObject("SyncResponse.log", response);

Please read the Best Practices section for practices that will greatly reduce the time you spend

debugging and troubleshooting.

Summer Cart Synchronization Guide

Page 20 of 21

How Do I?

Create an API account in Summer Cart?

1. Open your Summer Cart Admin panel.

2. Navigate to the bottom of the page and click API Accounts

3. Add a new API account (see next page for screenshot). For each data type that can be

synchronized, you can specify if the API account has access to the get(), getSync() and

modify() methods of the service in regards to this data type.

Summer Cart Synchronization Guide

Page 21 of 21

